Tag Archives: air compressor china

China manufacturer CHINAMFG Industrial Quality 8bar 1300W Oil Free Portable Piston Air Compressor Reciprocating Compressor for Factory & Industial Workshop for Russian Market supplier

Product Description

Overview:
______________________________________________________________________________________________________________________

Essential Details:
ZheJiang CHINAMFG Industry Co., Ltd established  on Nov, 2013, is a professional power tool supplier from China, which has always been committed to OEM & ODM with R&D of manufacturing enterprises to international power tools market. POPULUS is our registered brand, including wide range of power tools, bench tools, air tools, welding machine, high presure washers, garden tools, and power tools accessories etc.

Product Information:

Brand Name: POPULUS Air Pressure: 8Bar/0.8MPA
Model of Number: MX1202 Motor Type: Brush Motor
Grade: Industrial Power Source: AC Electric
Customized Support: OEM, ODM Voltage: 220-240 V
Application: Professional / Home Use Frequency: 50/60 Hz
Keyword: Industrial Demolition Hammer Input Power: 1300W
Warranty: 1 Year No-Load Speed: 2800rpm
Feature: Anti-vibration function Speed Type: Variable Speed
Protection Class: II Max. Displacement: 110L/min
Certification: GS, CE EMC, EMI, SGS, TUV, ROHS  Dimensions: 470*200*530mm
    Weight: 16.0Kg/piece

Supply Ability:
Supply Ability : 30000 Unit/Units per Month

Packaging  & Delivery:
Packaging Details:    Color Box, Blown Carton, 470*200*530mm,  16Kg/Carton
Export Port:               HangZhou, HangZhou, ZheJiang
Lead time: 

Quantity(pieces) 1 – 50  > 50
Lead time(days) 7 To be negotiated

Detailed Photos:

About Us
______________________________________________________________________________________________________________________

ZheJiang CHINAMFG Industry Co., Ltd established  on Nov, 2013, is a professional power tool supplier from China, which has always been committed to OEM & ODM with R&D of manufacturing enterprises to international power tools market. Maxin Industry owns 2 brands, MAXIN and POPULUS, mainly promote POPULUS brand products. It has a wide range of products, reasonable prices, credit, contract compliance, product quality assurance, and a variety of business modes. It has entered the international market with medium and high-end quality positioning. At present, it has nearly 300 customers from 60 countries in the world. Stability, efficiency and innovation have become the new label of CHINAMFG power tools series. High efficient and better customer experience has been the goal of CHINAMFG Power Tool brand.  Persistence in perfection in each tool will become the cornerstone of the enterprise. We are looking CHINAMFG to communication and sharing with you in field of power tools. You are welcome to inquire. 

Profession is our specialty, quality is our priority, and service is our value.

POPULUS Provides our partners with wide range of professional power tool products. Our products include but are not limited to power tools, garden tools, air tools, high pressure washers and accessories for the tools. POPULUS Products have been meticulously selected from various high-quality products. Their high quality has been verified in multiple professional markets abroad for many years, and highly praised by vast professional users.

High Quality with Competitive Price

We have been devoted to hardware industry for 16 years, winning the great trust and strong support from various customers all over the world and combined with our strong financial strength and large -scale purchase volume, we are able to provide the partners of POPULUS With professional products of best cost performance.

Factory
We have own Lab test room which can check the quality of product from mass production. From the purchaseing spare parts to the final products, every step we have professional QA team to check the quality. Not only the appearance design, we do lots of endurance test, function test, EMC/EMI test, integration test before the mass production. Most of POPULUS products have CE/GS/EMC/EMI/ROHS certification. Some item we get the ETL certification.

Professional QA and QC department will test the product function and performance strictly before delivery.

Quality Management

Powerful quality management team strictly follows high-standard quality control process and pre-delivery product inspection standard, so as to ensure the high degree of satisfaction from our partners in the quality of POPULUS Products.

Fast Delivery

We will always be prepared for shipment whenever you request. Three major export ports (HangZhou ,HangZhou and ZheJiang ) and full line of SKU products are prepared for you around the clock, enabling you to capture business opportunities easily.

Warehouse

Over 7500m2 warehouse, wide range of quality tools, ready stock for rapid delivery, MOQ 1 carton deliver in 7 days.

Exhibition

Providing innovative solutions for 300+ customer from 60+ countries all over the world. We are looking CHINAMFG to communication and sharing with you in field of power tools. You are welcome to inquire. 

Certifications

FAQ
______________________________________________________________________________________________________________________

After-sales Service: Online Support
Warranty: 1 Year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Parallel Arrangement
Cylinder Position: Vertical
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How are air compressors employed in the petrochemical industry?

Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:

1. Instrumentation and Control Systems:

Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.

2. Pneumatic Tools and Equipment:

Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.

3. Process Air and Gas Supply:

Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.

4. Cooling and Ventilation:

Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.

5. Nitrogen Generation:

Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.

6. Instrument Air:

Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.

By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.

air compressor

How does the horsepower of an air compressor affect its capabilities?

The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:

Power Output:

The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.

Air Pressure:

The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.

Air Volume:

In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.

Duty Cycle:

The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.

Size and Portability:

It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.

When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.

Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China manufacturer CHINAMFG Industrial Quality 8bar 1300W Oil Free Portable Piston Air Compressor Reciprocating Compressor for Factory & Industial Workshop for Russian Market   supplier China manufacturer CHINAMFG Industrial Quality 8bar 1300W Oil Free Portable Piston Air Compressor Reciprocating Compressor for Factory & Industial Workshop for Russian Market   supplier
editor by CX 2023-10-17

China supplier Engine Air Compressor C3974548 Diesel Engine Part Sp106141 Air Compressor lowes air compressor

Product Description

 

 

 

 Machine, is a physical system using power to apply forces and control movement to perform an action.

 

Machine part, is the heart of every machine. In here, you can find whatever part that you need. 

similar parts

 

The main selling machinery parts of CHINAMFG are LIUGONG, SD-LG, , XGMA, SHXIHU (WEST LAKE) DIS.I, SEM, Ko-matsu, CAT, Doosan, and so on. CHINAMFG has more than 2,000,000 machinery parts. A powerful database system provides strong data support even by just giving the part number. No matter original or OEM, you can get whatever you want.

 

More parts haven’t been shown in here, please feel free to contact us.

  

LGMC (ZheJiang CHINAMFG Machinery Co., Ltd), a company that specialized in not only construction machinery, but also more than 2,000,000 machinery parts (included LIUGONG, S-D-L-G,  XGMA, SHXIHU (WEST LAKE) DIS.I, SEM, Ko-matsu, CAT, Doosan, and so on), having all the engineering that can be used in the manufacturing industry, construction industry, general industry, and even agriculture. Those machines have been widely used everywhere with multiple functions. CHINAMFG focuses on heavy machinery investment in research and development of small machinery, winning great popularity in aboard markets. In here you can find everything no matter what you want.

Having a great advantage of location, CHINAMFG located in HangZhou, a city that has extensive rail connections with the rest of China, is the home of LiuGong Company, the biggest industrial base of ZheJiang Province. In line with the principle of “Honesty, High quality, Reliability, and Efficiency”, CHINAMFG has won great recognition in the market in just a few years, has gained support from major domestic manufacturers and trade organizations as well. CHINAMFG occupied the market relies on the good product quality, good after-sales service and exported to South Asia, Southeast Asia, Africa, South America, Mid East, Eastern Europe, and other regions. 24 hours 7 days stand by with a professional selling team, solves all kinds of problems on time, and provides specialized commentary of your questions. Always ready to welcome you and help to have a great cooperation experience.

 

 

After-sales Service: 3 Months
Warranty: 3 Months
Application: Hoisting Machinery
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

How does the horsepower of an air compressor affect its capabilities?

The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:

Power Output:

The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.

Air Pressure:

The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.

Air Volume:

In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.

Duty Cycle:

The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.

Size and Portability:

It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.

When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.

Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.

air compressor

What is the role of air compressor tanks?

Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:

1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.

2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.

3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.

4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.

5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.

6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.

Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.

China supplier Engine Air Compressor C3974548 Diesel Engine Part Sp106141 Air Compressor   lowes air compressorChina supplier Engine Air Compressor C3974548 Diesel Engine Part Sp106141 Air Compressor   lowes air compressor
editor by CX 2023-10-17

China Custom W-0.9/8 180L 10HP 7.5kw Portable Air Compressor air compressor portable

Product Description

Product Description

Features:

Oil lubricated, low maintenance operation.
Equipped with pressure regulator, pressure gauge, quick connect air outlet, safety valve, on/off switch.
Fully automatic control system aims at operation convenience, safety and reliability.
Operated at voltage 220/380/400//440V, 50/60Hz.
CE, CQC, ISO9001 certificated.

Designed for professionals and serious do-it-yourselfers, the versatile for the home, shop or jobsites. It can power impact guns, ratchets, grinders, drills, nailers, paint sprayers, sanders and more.
Reliable performance

Equipped with a pressure switch, pressure gauge, regulator, safety valve, manual drain and 3 CHINAMFG power cord.
Vertical design, takes up less floor space.

Product Parameters

 

Power (KW/ HP)

7.5KW/10HP

Tank (L)

180L

Cylinder

Φ90X3

Air delivery (L/min)

900 L/min

Pressure (psi,bar)

118psi/8bar

Speed (r.p.m)

920 rpm
N.W/ G.W 190kg/220kg
Package size

1330X540X980mm

 

Detailed Photos

Certifications

Packaging & Shipping

Plywood box package.

Company Profile

HangZhou LQ Machinery Co., Ltd, an established factory in HangZhou, China, with state of the art facility to design, manufacture and install world-class solutions for Garange Equipment, such as Tire Changer, Wheel Balancer, Air Compressor,Wheel Alignment Machine,Car Parking and Service lifts,Car jacks, Car tools,Brake Lathe,Spray Booth. Supply various lift, such as parking lift, car repair lift, include 2 post lift, 4 post lift, scissor lift,underground parking lift, muti parking system.

Our competent team is well prepared to anticipate, identify and exceed our customers’ expectations. LQ machinery enjoys excellent experience packed with strong technical know-how using latest manufacturing machines such as CNC Plasma, Press Brake, Cutting and Welding to guarantee the quality of every single part with minimal error and meeting international manufacturing standards in all production stages.

LQ Machinery through its Research and Development team is committed to provide unmatched quality yet maintaining efficient & ergonomic operation to insure producing durable and competitive parking lifts, service lifts for commercial and residential solutions.

With LQ Machinery , you can realize 1 stop purchase for garage equipment.Our 6 lines products and good after sale service.Life long technical support.

One stop purchase can realize with LQ: Car lift, Parking lift, Tyre changer, Wheel balancer, Wheel aligner,Car jacks, Car wash machine, Brake Lathe, Rim Straightening Machine, Spray booth, Frame Machine ,Air compressor,Tools and so on.

 

Our Advantages

1. QUALITY is our benchmark, it is most important thing.
2. Competitive and reasonable price.
3. Comprehensive and considerate services is in the whole process of each deal.
4. More than 10 years experience
5. Srong technology and team support.
6. One stop purchase for auto repair equipment.

After Sales Service

1. Car lift:  2 years against manufacturing defects,5 years for frame structure.
2. Tyre changer& wheel balancer: 1  year against manufacturing defects.
3. Wheel alignment machine:1 year for whole machine and 3 years for cameras & target plates.
4. Other Equipment:1 year since customer receive machine.

Lubrication Style: Lubricated
Cooling System: Air Cooling
Cylinder Arrangement: Duplex Arrangement
Cylinder Position: Vertical
Structure Type: Closed Type
Compress Level: Double-Stage
Samples:
US$ 600/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

How are air compressors utilized in pneumatic tools?

Air compressors play a crucial role in powering and operating pneumatic tools. Here’s a detailed explanation of how air compressors are utilized in pneumatic tools:

Power Source:

Pneumatic tools rely on compressed air as their power source. The air compressor generates and stores compressed air, which is then delivered to the pneumatic tool through a hose or piping system. The compressed air provides the force necessary for the tool to perform various tasks.

Air Pressure Regulation:

Air compressors are equipped with pressure regulation systems to control the output pressure of the compressed air. Different pneumatic tools require different air pressure levels to operate optimally. The air compressor’s pressure regulator allows users to adjust the output pressure according to the specific requirements of the pneumatic tool being used.

Air Volume and Flow:

Air compressors provide a continuous supply of compressed air, ensuring a consistent air volume and flow rate for pneumatic tools. The air volume is typically measured in cubic feet per minute (CFM) and determines the tool’s performance capabilities. Higher CFM ratings indicate that the pneumatic tool can deliver more power and operate at a faster rate.

Tool Actuation:

Pneumatic tools utilize compressed air to actuate their mechanical components. For example, an air-powered impact wrench uses compressed air to drive the tool’s internal hammer mechanism, generating high torque for fastening or loosening bolts and nuts. Similarly, air-powered drills, sanders, nail guns, and spray guns rely on compressed air to power their respective operations.

Versatility:

One of the significant advantages of pneumatic tools is their versatility, and air compressors enable this flexibility. A single air compressor can power a wide range of pneumatic tools, eliminating the need for separate power sources for each tool. This makes pneumatic tools a popular choice in various industries, such as automotive, construction, manufacturing, and woodworking.

Portability:

Air compressors come in different sizes and configurations, offering varying degrees of portability. Smaller portable air compressors are commonly used in applications where mobility is essential, such as construction sites or remote locations. The portability of air compressors allows pneumatic tools to be used in various work environments without the constraints of being tethered to a fixed power source.

Overall, air compressors are integral to the functionality and operation of pneumatic tools. They provide the necessary power, air pressure regulation, and continuous airflow required for pneumatic tools to perform a wide range of tasks efficiently and effectively.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China Custom W-0.9/8 180L 10HP 7.5kw Portable Air Compressor   air compressor portableChina Custom W-0.9/8 180L 10HP 7.5kw Portable Air Compressor   air compressor portable
editor by CX 2023-10-16

China manufacturer 21 M3/Min Closed Type Compressors Diesel Industrial Screw Portable Air Compressor OEM portable air compressor

Product Description

Product Description

Diesel mobile screw air compressor

This series of products pay more attention to the structural layout of products and the application of innovative technologies while improving the strength of the machine body. The self-developed cooler is equipped with fans with corresponding speed ratio, which can ignore all the high temperature weather. Diesel engines operating at economic speeds can improve fuel economy while operating at low noise. The double-door design greatly solves the trouble of inconvenient replacement of filter element during maintenance.

TECHNICAL SPECIFICATIONS
Type Screw Air Compressor
Item  21/17
Rated FAD 21 m³/min
Rate Pressure 17 bar
Diesel Brand Yuchai Diesel
Engine Power 191KW
Compression stage 2 Stage
Whole Machine walking mode 4wheels
Dimensions (L*W*H) 3200*2000*2600mm
Weight 3700KG

 

Detailed Photos

 

 

Packaging & Shipping

 

Company Profile

FAQ

Q1: Are you factory or trade company?
A1: We are factory. And we have ourselves trading company.

Q2: What the exactly address of your factory?
A2: Our company is located in Kaixuan Road ,Economic Zone HangZhou, ZHangZhoug, China

Q3: Warranty terms of your machine?
A3: One year warranty for the machine and technical support according to your needs.

Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.

Q5: What about the voltage of products? Can they be customized?
A5: Yes, of course. The voltage can be customized according to your equirement.

Q6: Which payment term can you accept?
A6: 30% T/T in advanced, 70% T/T against the B/L copy.

 

After-sales Service: 1 Year
Lubrication Style: Lubricated
Cooling System: Oil Cooling
Power Source: Diesel Engine
Cylinder Position: Angular
Structure Type: Closed Type
Customization:
Available

|

air compressor

What role do air dryers play in compressed air systems?

Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:

1. Moisture Removal:

Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.

2. Contaminant Removal:

In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.

3. Protection of Equipment and Processes:

By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.

4. Improved Productivity and Efficiency:

Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.

5. Compliance with Standards and Specifications:

Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.

By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.

air compressor

How are air compressors used in refrigeration and HVAC systems?

Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:

1. Refrigerant Compression:

In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.

2. Refrigeration Cycle:

The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.

3. HVAC Cooling and Heating:

In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.

4. Air Conditioning:

Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.

5. Compressor Types:

Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.

6. Energy Efficiency:

Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.

By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.

air compressor

What is the role of air compressor tanks?

Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:

1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.

2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.

3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.

4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.

5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.

6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.

Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.

China manufacturer 21 M3/Min Closed Type Compressors Diesel Industrial Screw Portable Air Compressor OEM   portable air compressorChina manufacturer 21 M3/Min Closed Type Compressors Diesel Industrial Screw Portable Air Compressor OEM   portable air compressor
editor by CX 2023-10-12

China Best Sales 110V and 220V Electric Portable Piston Air Compressor air compressor price

Product Description

Product Description:

110V and 220V Electric Portable Piston Air Compressor

Technical Parameters:

Voltage

110V/220V 

Frequency

AC 60Hz/50Hz

Ampere

5 A

Power

1100W

Volume Flow

114L/min

Rated exhaust pressure

0.8Mpa

Noise

65-70db

Tank Capacity

60L

Gross Weight

67kg

Product Size

88*48*77cm

Advantage:

Silent

Low working noise, create a quiet working environment.

Low vibration

With special rubber feet, reduce vibration during operation.

Core technology

Diamond hardness cylinder ensure durable working performance.

Easy operation

Quite simple operation, connect to power supply, just drainage regularly 

HOT SALE

Packing & Delivery(100% calibration before shipment)

OUR MISSION & VISSION: 
MISSION: We will make every effort to deliver superior value to customers with simple, innovation and quality products
VISSION: Quality working environment, quality products, close services for the betterment of dentistry worldwide

We’d like to make friends with colleagues from all circles with fine quality products,favorable prices and perfect services and create a beautiful future of the national dentistry industry! ! !

FAQ

Q1:Are you a company or factory?
Yes,we are a dental equipment manufacturer in HangZhou,China.
Q2:What ‘s your advantage?
KJ Dental founded in 2008,professional dental chair & dental chair spare parts manufacturer. Providing good after-sale service and competitive price.
Q3:What is your warranty?
Have 1 year warranty.If having any problems,you can send us photos,we will give you the spare parts for free.
Q4:How about the delivery days?
It depends on the quantity and model you order. Normally,2-3days.
Q5:What certificates do CHINAMFG have?
We have the ISO 13485:2003, EN ISO13485:2012,our product got the CE certificated. We also have different kinds of certificates and documents to meet with different foreign countries.For more information,pls contact us.

 

Teeth Whitening Method: Laser Whitening
Applicable Departments: Oral Surgery
Certification: ISO, CE
Type: Dental Auxiliary Materials
Material: Metal
Lubrication Style: Oil-Free

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

How do you choose the right air compressor for woodworking?

Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:

1. Required Air Volume (CFM):

Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.

2. Tank Size:

Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.

3. Maximum Pressure (PSI):

Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.

4. Noise Level:

Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.

5. Portability:

Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.

6. Power Source:

Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.

7. Quality and Reliability:

Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.

8. Budget:

Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.

By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China Best Sales 110V and 220V Electric Portable Piston Air Compressor   air compressor priceChina Best Sales 110V and 220V Electric Portable Piston Air Compressor   air compressor price
editor by CX 2023-10-12

China manufacturer 88290003-532 Air Compressor Coolant Temperature Indicator for CHINAMFG with Best Sales

Product Description

88290003-532 Air Compressor Coolant Temperature Indicator for Sullair
Product Description

pack your goods?
There is 3 kinds of ways to packed the goods, which depends on your requirement
1. Packed with original package
2. Packed with your design package
3. Packed with our blank package, below is the example for reference
Air Compressor Coolant Temperature Indicator for Sullair FAQ
Q1: How can I get the quotation?
A: you can advise us the part number for checking, and we will quote to you soon by email

Q2: What kind of ways for transportation ?
A:In general by air, sea or Express.(like DHL,Fedex,TNT,etc.)

Q3: How do I know the quality of productions?
A:We have a strict series of quality control, and we have perfect after service system, which can help you to solve the problem soon

Q4: If i want to change model,size,package,etc. How can I do?
A:You can contact us by or mail, and we will revise according to your requirement

Q5: What is the terms of payment ?
A: T/T, Western Union, paypal

Warranty: 1 Year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Structure Type: Closed Type
Customization:
Available

|

air compressor

Are there special considerations for air compressor installations in remote areas?

Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:

1. Power Source:

Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.

2. Environmental Conditions:

Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.

3. Accessibility and Transport:

Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.

4. Maintenance and Service:

In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.

5. Fuel and Lubricants:

For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.

6. Noise and Environmental Impact:

Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.

7. Communication and Remote Monitoring:

Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.

By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.

air compressor

How do you choose the right air compressor for woodworking?

Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:

1. Required Air Volume (CFM):

Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.

2. Tank Size:

Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.

3. Maximum Pressure (PSI):

Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.

4. Noise Level:

Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.

5. Portability:

Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.

6. Power Source:

Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.

7. Quality and Reliability:

Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.

8. Budget:

Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.

By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China manufacturer 88290003-532 Air Compressor Coolant Temperature Indicator for CHINAMFG   with Best SalesChina manufacturer 88290003-532 Air Compressor Coolant Temperature Indicator for CHINAMFG   with Best Sales
editor by CX 2023-10-11

China manufacturer Ybf6f-50.2g Semi-Hermetic Piston Refrigeration Air Compressor for AC for Cold Room Condensing Unit air compressor portable

Product Description

Product Description

 

ABOUT US

HangZhou Ouyu  is an importing and exporting branch of ZHangZhoug Briliant Refrigeration Equipment Co., Ltd., a professional Refrigeration Equipment Co., Ltd.,It integrates compressor design, development, production and sales Located in ZHangZhoug province,founded in 2013.Now we have more than 100 employees, covers a total area of 17,000 square meters.

Small volume ,light weight,small vibration,low noise,high effciency and energy saving,environmental protection,security and stability.

Compressor Model Nominal Motor Power (HP/KW) Displacement (50Hz)m³/h Number of Cylinder x Diameter x Stroke mm Oil injection volume (L) Powersupply V/Φ/Hz Electricalparameter Crankcase Heater (220V) W Oilsupply method Weight (including freezingoil) Kg
Max.operating current A Starting current/rotor locked current. Operating current A
YBF2FC-2.2Z 2/1.5 9.54 2×φ46×33 1 △/Y   
  Directly start the motor
220~240△
380~420Y
/3~/50
265~290△
400~480Y
/3~/60
8.5/4.9 39/22.5 60 Centrifgal lubrcation 45
YBF2FC-3.2G 3/2.2 9.54 2×φ46×33 1 10.0/5.8 44.2/25.5 60 47
YBF2DC-2.2Z 2/1.5 13.42 2×φ50×39.3 1.5 11.9/6.9 53.7/30.7 100 68
YBF2DC-3.2G 3/2.2 13.42 2×φ50×39.3 1.5 13.5/7.8 64/37 100 71
YBF2CC-3.2Z 3/2.2 16.24 2×φ55×39.3 1.5 14.8/8.5 64/37 100 70
YBF2CC-4.2G 4/3.0 16.24 2×φ55×39.3 1.5 16.4/9.4 76.6/44.2 100 70
YBF4FC-3.2Z 3/2.2 18.05 4×φ41×39.3 2 15.9/9.2 76.6/44.2 100 81
YBF4FC-5.2G 5/3.7 18.05 4×φ41×39.3 2 18.7/10.8 107.7/62.2 100 85
YBF4EC-4.2Z 4/3.0 22.72 4×φ46×39.3 2 18.5/10.7 92.7/53.3 100 82
YBF4EC-6.2G 6/4.4 22.72 4×φ46×39.3 2 22.9/13.2 107.7/62.2 100 85
YBF4DC-5.2Z 5/3.7 26.84 4×φ50×39.3 2 23.4/13.5 107.7/62.2 100 85
YBF4DC-7.2G 7/5.1 26.84 4×φ50×39.3 2 27.5/15.9 142.8/82.4 100 88
YBF4CC-6.2Z 6/4.4 32.48 4×φ55×39.3 2 27.5/15.9 142.8/82.4 100 89
YBF4CC-9.2G 9/6.6 32.48 4×φ55×39.3 2 34.5/20.0 142.8/82.4 100 89
YBF4VCS-6.2Z 6/4.4 34.73 4×φ55×39.3 2.6 PW
Split winding starting motor
380~420YY
/3/50
400~480YY
/3/60
14 39/68 120 117
YBF4VCS-10.2G 10/7.5 34.73 4×φ55×42 2.6 21 59/99 120 127
YBF4TCS-8.2Z 8/5.5 41.33 4×φ60×42 2.6 17 49/81 120 122
YBF4TCS-12.2G 12/8.8 41.33 4×φ60×42 2.6 24 69/113 120 129
YBF4PCS-10.2Z 10/7.5 48.05 4×φ65×42 2.6 21 59/99 120 127
YBF4PCS-15.2G 15/10.5 48.05 4×φ65×42 2.6 31 81/132 120 135
YBF4NCS-12.2Z 12/8.8 56.25 4×φ70×42 2.6 24 69/113 120 129
YBF4NCS-20.2G 20/15 56.25 4×φ70×42 2.6 37 97/158 120 138
YBF4H-15.2Z 15/10.5 73.6 4×φ70×55 4.5 31 81/132 120 Forced-lubrication 183
YBF4H-25.2G 25/18.5 73.6 4×φ70×55 4.5 45 116/193 120 194
YBF4G-20.2Z 20/15 84.5 4×φ75×55 4.5 37 97/158 120 192
YBF4G-30.2G 30/22 84.5 4×φ75×55 4.5 53 135/220 120 206
YBF6H-25.2Z 25/18.5 110.5 6×φ70×55 4.75 45 116/193 120 224
YBF6H-35.2G 35/25.5 110.5 6×φ70×55 4.75 61 147/262 120 235
YBF6G-30.2Z 30/22 126.8 6×φ75×55 4.75 53 135/220 120 228
YBF6G-40.2G 40/30 126.8 6×φ75×55 4.75 78 180/323 120 238
YBF6F-40.2Z 40/30 151.6 6×φ82×55 4.75 78 180/323 120 238
YBF6F-50.2G 50/37 151.6 6×φ82×55 4.75 92 226/404 120 241

Company Profile

 

After-sales Service: 1 Years
Warranty: 1 Years
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Angular
Structure Type: Semi-Closed Type
Samples:
US$ 490/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How are air compressors utilized in pharmaceutical manufacturing?

Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:

1. Manufacturing Processes:

Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.

2. Instrumentation and Control Systems:

Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.

3. Packaging and Filling:

Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.

4. Cleanroom Environments:

Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.

5. Laboratory Applications:

In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.

6. HVAC Systems:

Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.

By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.

air compressor

How are air compressors employed in the mining industry?

Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:

1. Exploration and Drilling:

Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.

2. Ventilation and Air Quality Control:

Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.

3. Material Conveyance:

In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.

4. Dust Suppression:

Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.

5. Instrumentation and Control:

Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.

6. Explosive Applications:

In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.

7. Maintenance and Repair:

Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.

It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.

By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.

air compressor

What is the role of air compressor tanks?

Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:

1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.

2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.

3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.

4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.

5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.

6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.

Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.

China manufacturer Ybf6f-50.2g Semi-Hermetic Piston Refrigeration Air Compressor for AC for Cold Room Condensing Unit   air compressor portableChina manufacturer Ybf6f-50.2g Semi-Hermetic Piston Refrigeration Air Compressor for AC for Cold Room Condensing Unit   air compressor portable
editor by CX 2023-10-11

China factory 55kw-90kw 2 Stage Compression General Screw Air Compressor Made in Germany mini air compressor

Product Description

55kw-90kw 2 Stage Compression General Screw Air Compressor Made In Germany 

1> Efficient,Durable 3-proof motor.
2> The screw air end of excellent performance.
3> The world top-level 3 filters.
4> The safty and reliability of electrocal control system.
5> The accurate temperature control valve.
6> The whole machine sound insulation design,low noise.
 
The Specifications for Industrial Rotary Screw Air Compressor 
 

Model No HGM55-II
Capacity(m3/min) 12
Work pressure(Bar) 8
Power(Kw) 55
Compression Grade 2 Stage 
Energy Efficiency Grade First level
Start Method  soft-starting method
Speed(Rpm) 1500
Connector G2″
Air Methods Air Cooling

Driving Method Direct Driven
Weight(kg) 2180
Dimension(MM) 2100*1250*1730

More Industrial Rotary Screw Air Compressor :

Model No  Capacity(m3/min) Work pressure(Bar) Power(Kw) Speed(Rpm) Air Methods Driving Method Weight(kg) Dimension(MM)
LG7BZ 1.15 8 7.5   Air Cooling Belt Driven 200 560*630*1075
LG11BZ 1.65 8 11 2940 Air Cooling Belt Driven 300 650*720*1180
LG15BZ 2.3 8 15 2940 Air Cooling Belt Driven 350 650*720*1180
LG22EZ 3.6 8 22 2940 Air Cooling Direct Driven 550 1150*770*1135
LG37EZ 6.5 8 37 2950 Air Cooling Direct Driven 750 1300*880*1250
LG55EZ 10.2 8 55 2970 Air Cooling Direct Driven 1300 970*1600*1450
LG75EZ 12.4 8 75 2970 Air Cooling Direct Driven 1600 1750*1030*1450

Picture:

 

Lubrication Style: Lubricated
Cooling System: Air Cooling
Structure Type: Closed Type

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Can air compressors be used for shipbuilding and maritime applications?

Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:

1. Pneumatic Tools and Equipment:

Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.

2. Painting and Surface Preparation:

Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.

3. Pneumatic Actuation and Controls:

Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.

4. Air Start Systems:

In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.

5. Pneumatic Conveying and Material Handling:

In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.

6. Air Conditioning and Ventilation:

Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.

These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.

air compressor

How are air compressors used in refrigeration and HVAC systems?

Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:

1. Refrigerant Compression:

In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.

2. Refrigeration Cycle:

The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.

3. HVAC Cooling and Heating:

In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.

4. Air Conditioning:

Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.

5. Compressor Types:

Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.

6. Energy Efficiency:

Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.

By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China factory 55kw-90kw 2 Stage Compression General Screw Air Compressor Made in Germany   mini air compressorChina factory 55kw-90kw 2 Stage Compression General Screw Air Compressor Made in Germany   mini air compressor
editor by CX 2023-10-10

China high quality Viair 480c Chrome Single 200psi Air Compressor manufacturer

Product Description

Product Description

Product Name 480/444C Air Tyre Compressor
Voltage DC 12V
Max Amperage 23A
Max Pressure 300PSI(2.06Mpa)
Max Working Pressure 200PSI(1.37Mpa)
Max Duty Cycle 100%@100PSI
Flow Rate 1.8CFM@0PSI
Metal Hose Ø14mm*0.5m
Check Valve Threads 1/4″.3/8”
Fill Rate(8L Tank) 0-120PSI   1Min. 40Sec
80-120PSI 40Sec
Main Dimension(LxWxH) 325*145*225mm
Net Weight(Kgs)

10.5kgs

Features:
444C is a truly rated, 200 PSI-rated compressor. It features horizontal cooling fins and
a trapezoidal head design, a standard 3/8″ stainless steel braided leader hose with 3/8″ NPT
inline check valve and insulated wiring. 

Included Parts: Installation instructions,Mounting hardware,Vibration isolators,Remote
mount air filter assembly,Stainless steel braided leader hose.Check valve.

Other related product:

Valve block(1/4”,3/8”):

Switch Controller with Braided Harness:

2W160 Manifold solenoid valve(2W160-1F,2W160-2F,2W160-4F) :

Pressure Switch for air compressor:

Why choose us?

  1. Sincere service,all message and question will reply within 2 hours
  2. OEM service
  3. Free samples will be send for your evaluation
  4. Customize as your requirement
  5. Well-trained staff,Import Highpoint machine, top raw materials
  6. Top quality,Efficient,Professonal 
  7. Good after-sale services

Packaging & Shipping
Packaging type: 

VPC Box White Box Color Box VPC Carton Pallet

Delivery time:

conventional products customized products specially customized products
on the day of payment 10 workdays  25 workdays.

Payment term:

Paypal TT Western Union DP LC Money Gram Online Bank Alibaba credit order Pay later DA
YES YES YES NO NO YES YES YES YES

         YES            

Transportation:

Express(DHL,UPS,TNT,JCEX,FEDEX) is available.

Sea and Air transports are available.

The most suilable transport way will be chosen for you.

FAQ
Q1:Are you trading company or manufacturer ?

A:We are the Manufacturer from HangZhou,China .We can customize as your requirement,but MOQ requrement.

Q2:What is your quality assurance ?

A:We have strict quality control.If you suffer losses due to transportation or quality failure,you can choose a refund 
or we can ressue your new goods,the freight will be borne by us.

Q3:Do you provide samples ?Is it free or extra ,

A:Yes,free samples can be provided,  but you’ll pay for the shipping fee.

Q4:How long can I expect to get the sample and mass order ?

A:For conventional  sample order,the delivery time is in 5 workdays,and for mass order,the delivery time is in 10 workdays.

Classification: Variable Capacity
Job Classification: Reciprocating
Transmission Power: Power
Cooling Method: Air-cooled
Cylinder Arrangement Mode: Duplex
Cylinder Stage: Multi Stages
Samples:
US$ 65/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

What are the environmental considerations when using air compressors?

When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:

Energy Efficiency:

Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.

Air Leakage:

Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.

Noise Pollution:

Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.

Emissions:

While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.

Proper Waste Management:

Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.

Sustainable Practices:

Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.

By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.

air compressor

What maintenance is required for air compressors?

Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:

1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.

2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.

3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.

4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.

5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.

6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.

7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.

8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.

9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.

10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.

Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.

China high quality Viair 480c Chrome Single 200psi Air Compressor   manufacturer China high quality Viair 480c Chrome Single 200psi Air Compressor   manufacturer
editor by CX 2023-10-10

China Good quality Zf-2.6/ (3. -5) -10 Piston Air Compressor Natural Gas Compressor for Sale Suitable for Petroleum, Chemical, Gas and Other Factories lowes air compressor

Product Description

HangZhou United Compressor Manufacturing Co., Ltd. was established in 2002 and is a high-tech enterprise in ZheJiang Province. The company has complete production equipment testing methods, and relies on its technological advantages to introduce, absorb, and digest new technologies and processes from abroad. The products have covered all domestic demand industries and regions, and are exported to multiple countries such as Russia, Tajikistan, India, Pakistan, North Korea, etc. It is a qualified supplier and partner for many domestic and foreign enterprises.
    The company has a sales and service team that continuously provides customers with various energy-saving and modern compressor system products. In the past 10 years, the company has maintained rapid and stable development, providing products and services for industries such as natural gas, steel, petroleum, chemical, coal, mining, and metallurgy. We not only have mature products, but also have a capable after-sales service team, such as conducting pre-sales inspections of compressors, timely tracking during sales, and 24-hour after-sales repair and maintenance services.

Product Application
Mainly used for pressurized transmission of natural gas into the pipeline network (Natural pipeline gas extraction and combustible gas recovery tank filling)
It can also be used for stirring in the pharmaceutical and brewing industries, pressurized gas transportation in the chemical industry, blow molding bottle making in the food industry, and dust removal of parts in the machine manufacturing industry.
Product Features
1. This series of compressors is an advanced piston compressor unit produced and manufactured using the product technology of Mannes Mandermarg Company in Germany.
2. The product has the characteristics of low noise, low vibration, compact structure, smooth operation, safety and reliability, and high automation level. It can also be configured with a data-driven remote display and control system according to customer requirements.
3. Equipped with alarm and shutdown functions for low oil pressure, low water pressure, high temperature, low inlet pressure, and high exhaust pressure of the compressor, making the operation of the compressor more reliable.
Structure Introduction
The unit consists of a compressor host, electric motor, coupling, flywheel, pipeline system, cooling system, electrical equipment, and auxiliary equipment.

Reference Technical parameters and specifications

NO. MODEL Compressed medium Flow rate
Nm³/h
Inlet pressure
MPa
Outlet pressure
MPa
Rotating speed
r/min
Motor power
KW
Cooling mode Overall dimension
mm
Weight
Kg
1 DW-14/(0-0.2)-25 Raw gas 800 0-0.02 2.5 740 160 Water cooled 4800*3200*1915 ~10000
2 VW-8/18 Vinylidene fluoride gas 418 Atmospheric pressure 1.8 980 75 Water cooled 3700*2000*1700 ~4500
3 VWD-3.2/(0-0.2)-40 Biogas 230 0-0.2 4.0 740 45 Water cooled 6000*2500*2650 ~8000
4 VW-9/6 Ethyl chloride gas 470 Atmospheric pressure 0.6 980 55 Water cooled 2800*1720*1700 ~3500
5 DWF-12.4/(9-12)-14 Carbon dioxide 6400 0.9-1.2 1.4 740 185 Air cooled 6000*2700*2200 ~10000
6 VWF-2.86/5-16 Nitrogen gas 895 0.5 1.6 740 55 Air cooled 3200*2200*1750 ~3500
7 DW-2.4/(18-25)-50 Raw gas 2900 1.8-2.5 5.0 980 160 Water cooled 4300*3000*1540 ~4500
8 VW-5.6/(0-6)-6 Isobutylene gas 1650 0-0.6 0.6 740 45 Water cooled 2900X1900X1600 ~3500
9 VW-3.8/3.5 Mixed gas 200 Atmospheric pressure 0.35 980 18.5 Water cooled 2200*1945*1600 ~2000
10 ZW-1.7/3.5 Vinyl chloride gas  100 Atmospheric pressure 0.35 740 15 Water cooled 2700X1600X2068 ~2000
11 ZWF-0.96/5 Hydrogen chloride gas 55 Atmospheric pressure 0.5 740 11 Air cooled 2000*1500*2000 ~1000
12 VW-0.85/(0-14)-40  Refrigerant gas 300 0-1.4 4.0 740 55 Water cooled 4500*2300*1780 ~5500
13 DW-3.78/(8-13)-(16-24) Ammonia gas 2700 0.8-1.3 1.6-2.4 740 75 Water cooled 3200*2000*1700 ~3500

Related products

 

 

Warranty: 12 Months
Lubrication Style: Customized
Cooling System: Air/Water /Mixed Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Customized
Structure Type: Open Type
Customization:
Available

|

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

How do you troubleshoot common air compressor problems?

Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:

1. No Power:

  • Check the power source and ensure the compressor is properly plugged in.
  • Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
  • Verify that the compressor’s power switch or control panel is turned on.

2. Low Air Pressure:

  • Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
  • Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
  • Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.

3. Excessive Noise or Vibration:

  • Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
  • Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
  • Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.

4. Air Leaks:

  • Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
  • Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
  • Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.

5. Excessive Moisture in Compressed Air:

  • Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
  • Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
  • Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.

6. Motor Overheating:

  • Ensure the compressor’s cooling system is clean and unobstructed.
  • Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
  • Verify that the compressor is not being operated in an excessively hot environment.
  • Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
  • Consider using a thermal overload protector to prevent the motor from overheating.

If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.

air compressor

What are the key components of an air compressor system?

An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:

1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.

2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.

3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.

4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.

6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.

7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.

8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.

9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.

10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.

These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.

China Good quality Zf-2.6/ (3. -5) -10 Piston Air Compressor Natural Gas Compressor for Sale Suitable for Petroleum, Chemical, Gas and Other Factories   lowes air compressorChina Good quality Zf-2.6/ (3. -5) -10 Piston Air Compressor Natural Gas Compressor for Sale Suitable for Petroleum, Chemical, Gas and Other Factories   lowes air compressor
editor by CX 2023-10-09